منابع مشابه
Axiomatic Theory of Sobolev Spaces
We develop an axiomatic approach to the theory of Sobolev spaces on metric measure spaces and we show that this axiomatic construction covers the main known examples (Hajtasz Sobolev spaces, weighted Sobolev spaces, Upper-gradients, etc). We then introduce the notion of variational p-capacity and discuss its relation with the geometric properties of the metric space. The notions of p-parabolic ...
متن کاملApproximation Theory for Weighted Sobolev Spaces on Curves
In this paper we present a definition of weighted Sobolev spaces on curves and find general conditions under which the spaces are complete. We also prove the density of the polynomials in these spaces for non-closed compact curves and, finally, we find conditions under which the multiplication operator is bounded on the completion of polynomials. These results have applications to the study of ...
متن کاملGlobal automorphic Sobolev spaces
The goal is legitimization of term-wise differentiation of L spectral expansions, so that computations producing a classical outcome are correct. We are fond of L expansions because they are what Plancherel gives. Typically, L expansions are not continuous, much less differentiable, so the issue cannot be proving classical differentiability, which does not hold. To say that L spectral expansion...
متن کاملLifting in Sobolev Spaces
for some function φ : Ω → R. The objective is to find a lifting φ “as regular as u permits.” For example, if u is continuous one may choose φ to be continuous and if u ∈ C one may also choose φ to be C. A more delicate result asserts that if u ∈ VMO (= vanishing means oscillation), then one may choose φ to be also VMO (see R. Coifman and Y. Meyer [1] and H. Brezis and L. Nirenberg [1]). In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expositiones Mathematicae
سال: 2001
ISSN: 0723-0869
DOI: 10.1016/s0723-0869(01)80018-9